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ABSTRACT 

Automated image analysis of slides of thin blood smears can assist with early diagnosis of many diseases. 
Automated detection and segmentation of red blood cells (RBCs) are prerequisites for any subsequent quantitative high-
throughput screening analysis since the manual characterization of the cells is a time-consuming and error-prone task. 
Overlapping cell regions introduce considerable challenges to detection and segmentation techniques. We propose a 
novel algorithm that can successfully detect and segment overlapping cells in microscopic images of stained thin blood 
smears. The algorithm consists of three steps. In the first step, the input image is binarized to obtain the binary mask of 
the image. The second step accomplishes a reliable cell center localization that utilizes adaptive meanshift clustering. We 
employ a novel technique to choose an appropriate bandwidth for the meanshift algorithm. In the third step, the cell 
segmentation purpose is fulfilled by estimating the boundary of each cell through employing a Gradient Vector Flow 
(GVF) driven snake algorithm. We compare the experimental results of our methodology with the state-of-the-art and 
evaluate the performance of the cell segmentation results with those produced manually. The method is systematically 
tested on a dataset acquired at the Chittagong Medical College Hospital in Bangladesh. The overall evaluation of the 
proposed cell segmentation method based on a one-to-one cell matching on the aforementioned dataset resulted in 98% 
precision, 93% recall, and 95% F1-score index.  
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1. INTRODUCTION 
 

Enumeration and segmentation of cells in microscopic images provides useful information for many different 
applications. For example, the slides of stained peripheral thin blood smears are analyzed to assist with diagnosis of 
blood disorders. In the slides of thin blood smears, three types of cells appear: white blood cells (leukocytes), red blood 
cells (erythrocytes), and platelets (thrombocytes). Red blood cells (RBCs) are disk-shaped, nucleus-less cells in the blood 
that carry oxygen throughout the human body. The average disk diameter of a typical human RBC is approximately 6-8 
µm. Any irregularity regarding the count of RBCs may be a sign of conditions such as hemolytic anemia, polycythemia 
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and leukemia[1]. Moreover, abnormalities relating to shape, size, texture and/or color of the cells observed in a 
microscopic image can lead to diagnosis of several pathological conditions such as sickle cell disease, thalassemia and 
malaria infection [1].   

Manually detecting and segmenting red blood cells in microscopic images of thin blood smears by visual 
inspection is a tedious, time consuming and error-prone task. On the other hand, automated algorithms for cell detection 
and segmentation have proven useful in supplementing or even substituting the manual process [2, 3]. However, the 
presence of overlapping cells is known to adversely affect the automatic detection and segmentation process.  

It is therefore not surprising that the segmentation of single and overlapping RBCs has been and continues to be 
extensively studied. Algorithms based on Otsu thresholding [4-12], edge detection [13] and quaternion Fourier transform 
[14] have been employed, yet they have shown limitations with regard to high color and textural variations. Active 
contour models [15, 16], PCNN-based RBC segmentation [17, 18], K-means clustering [19, 20] and Poisson distribution 
thresholding [21] have been found to fall short of handling overlapping RBCs regions. Watershed has been widely used 
for RBCs segmentation [5, 22, 23], nonetheless it has shown a tendency towards oversegmentation. To solve this 
problem, marker-controlled watershed algorithms have been introduced [24-26], although marker-controlled watershed 
methods can address the oversegmentation problem successfully only if the extracted markers represent the actual 
objects. Hough transform [27-30], ellipse fitting [31], granulometry [8, 32] and rule-based approaches [33, 34] have been 
employed effectively in segmentation of overlapping regions; however, since these methods make restrictive shape 
assumptions, cell shape information may be distorted. The objective of this paper is to develop a new algorithm that can 
improve detection and segmentation of overlapping RBCs in microscopic images of thin blood smears. 

 

2. METHODOLOGY 
 

In this work, we present a novel methodology that successfully performs detection and segmentation of RBCs, 
including overlapping cells. The three main steps of this algorithm are preprocessing, cell detection by adaptive 
meanshift clustering, and cell segmentation using GVF-driven snake active contours (Gradient Vector Flow). The output 
of the preprocessing step is the binary mask of the input image where RBCs appear as white blobs. In the cell detection 
step, an adaptive meanshift algorithm localizes the geometric centers of the cells using the obtained binary mask. An 
appropriate bandwidth for the mean shift algorithm is chosen automatically by our proposed method. Finally, in the cell 
segmentation step, the presented cells in the binary mask are segmented utilizing a GVF-driven deformable snake 
method. Figure 1 demonstrates the flowchart of the overall algorithm for detection and segmentation of overlapping 
RBCs. Each step is explained in the following subsections and the result of each step is demonstrated on a sample image 
from the dataset we used in our experiments. 

 

Figure 1. The flowchart of the overall algorithm 
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2.1 Preprocessing 
 

 Our proposed preprocessing step outputs the binary mask of the input image in order for it to be used in the 
subsequent meanshift clustering step. The preprocessing step involves five stages. In the first stage, the region of interest 
(ROI), i.e., the non-black region in the image that is visible through the microscope, is extracted from the image and 
subsampled by the factor of 1/4 for the benefit of computational speed. In the second stage, principal component 
analysis (PCA) is used to reduce the dimensionality of the RGB space down to one [35]. PCA is applied to the raw 
matrix of pixel values in which each row corresponds to an individual pixel’s RGB intensity values. Applying PCA in 
this manner results in a 3x3 coefficient matrix in which each column consists of coefficients for one principal component 
in descending order of component variance. PCA coefficients corresponding to the largest component variance are used 
to obtain the grayscale intensity value for each pixel. Therefore, at this point, the grayscale version of the image is 
obtained. In the third stage, the subsampled grayscale image is binarized by replacing all the intensity values above a 
globally determined threshold with zeros and setting all the other values to ones. The global threshold for binarization is 
calculated using Otsu’s method [36]. This method assumes that the image contains two classes of pixels following a 
bimodal histogram and calculates the optimum threshold separating the two classes where the inter-class variance is 
maximal. As the representative example in Figure 2 shows, Otsu’s method is an appropriate choice of thresholding for 
our application. The purpose of binarization is to obtain the binary mask of the subsampled image, in which the cells 
appear as connected and preferably isolated blobs. Through the fourth stage, the binary mask is refined. In many of our 
images, there are cells that have distorted translucent regions within them, known as pallor zones [37]. The pallor zones 
manifest themselves as holes within the blobs after binarization and are removed from consideration by morphological 
filling. In the last stage, a size filter is used to remove impertinent blobs from the mask image that may correspond to 
contamination from the staining and/or imaging process or even blood components such as platelets. Since the average 
diameter of a platelet is around 2-4 µm, i.e., less than half of the diameter of an average RBC, the size of an average 
platelet is approximately one fourth of that of an average RBC. Therefore, the size threshold in this experiment is set 
around one fourth of the average area of a single RBC. The average area of a RBC is estimated manually from the 
images in the dataset that were used in our experiments. Figure 3 shows the results of all the stages of the preprocessing 
step. 

 

Figure 2. Histogram of the grayscale version of the sample image shown in Fig. 3a 
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In Figure 4, centers of the cells as generated by the meanshift algorithm are plotted on the ROI of the sample 
image. Since the data points are labeled after the meanshift procedure, we are able to find the pixels located on the 
boundary of each cell. These pixels represent the partial boundary of the corresponding cell. To obtain the partial 
boundary of the  cell, the mutual pixels between the edge map of the binary image and the pixels within the  cell 
are determined. In other words, the data points within the  cluster that belong to the edge map of the binary mask 
represent the partial boundary of the corresponding cell. Figure 5 demonstrates the derived partial boundaries marked on 
all the cells in the ROI of the sample image. For more detailed explanation of this step, please refer to [39]. 

 

 

Figure 5. Extracted partial boundaries marked on the cells in the ROI of the sample image 

 

2.3 Cell Segmentation 
 

The last step of the algorithm estimates full boundaries of the RBCs utilizing a GVF-driven Snake algorithm 
[40]. GVF-driven snakes can be initialized both inside and outside of the object and can successfully handle partial 
boundaries. These two properties make this method a suitable choice for our application since there are cases of partial 
boundaries derived in the previous step. Having the partial boundary of individual cells accumulated in the previous step, 
GVF-driven snake is performed individually on the derived partial contour of each cell from the binary mask. For each 
cell, a mask is generated where only the partial boundary pixels of the corresponding cell are white. In this mask, the 
active contour is initialized as a circular curve located at the center of the cell with a sufficiently small radius to fit inside 
the cell (e.g. 3 pixels). As mentioned, all the cell center locations are calculated through the meanshift procedure. The 
evolution of the GVF-driven snake is terminated when it reaches the partial boundary pixels. The resultant curve is the 
estimated boundary of the corresponding cell. The algorithm repeats this process for all the cells present in the image. 
Figure 6 illustrates the acquired segmentation boundaries of all the cells marked on the sample image. For more 
comprehensive elaboration of this step, please refer to [39]. 
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results of our algorithm are comparable with the ones obtained by the edge profile active contour and colored graph-
based coupling algorithm presented in [44] with 94% precision, 96% recall, and 95% F-score. These results are tabulated 
in Table 1.  

Table 1. The overall segmentation results compared with the ground truth annotations 

Method Precision Recall F1-score 
Otsu Thresholding [7] 84% 81% 82% 

Marker-controlled Watershed [43] 93% 95% 94% 
[44] 94% 96% 95% 

Proposed method 98% 93% 95% 
 

To evaluate the performance of the bandwidth selection method, the algorithm was also tested on the entire 
dataset, with the meanshift algorithm employing the constant bandwidth value of 0.6R. The quantitative metrics were 
again calculated based on one-to-one matching. The results in Table 2 indicate that our proposed method for bandwidth 
selection strongly improves the overall results since it significantly decreases the number of falsely detected RBCs. 

Table 2. Quantitative comparison of our bandwidth selection method with static bandwidth meanshift. 

Method Precision Recall F1-score 
Constant bandwidth value of 0.6R for meanshift algorithm 92% 94% 93% 
Our proposed bandwidth selection method for meanshift algorithm 98% 93% 95% 

 

5. CONCLUSION 
 

 In this work, we introduced an algorithm that successfully performs detection and segmentation of RBCs. The 
proposed algorithm for cell detection employs an adaptive meanshift clustering technique that is capable of detecting 
multiple overlapping cells. It provides the number of cells present in an image, which can then be used for clinical 
purposes. We propose a novel method to select the bandwidth for the meanshift algorithm. Our method for cell 
segmentation utilizes GVF-driven snakes to segment cells accurately and obtain their boundaries. The results on our 
dataset demonstrate that the method yields superior or comparable segmentation performance compared to the results of 
other state-of-the-art methods.  
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Figure 7. The results for cell detection and cell segmentation demonstrated on sample segments in images from the dataset
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